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The classification of tensor surface harmonic functions 
for clusters and coordination compounds 
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A simple method for enumerating the L ~ and L ~ / L  ~ functions for polyhedral 
cluster and coordination molecules, within Stone's tensor surface harmonic 
methodology, is described. The nature of  the L ~ orbitals which are generated 
depends on the polyhedral topology and in particular the number  of  layers 
of  vertices and the number  of  vertices within each layer. The L~/f_,~ functions 
are enumerated from the L~'s by a number  of  spherical harmonic multiplica- 
tion rules. 
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1. Introduction 

According to Stone's tensor surface harmonic (TSH) theory [1-4], the vertices 
of  a cluster molecule are defined as lying on the surface of a single sphere, with 
each atom (i) assigned the angular coordinates (0i, ~bi), as shown in Fig. 1. The 
solutions of  the Schrrdinger equation for a particle on a sphere are based on 
spherical harmonic functions which may, as in the case of  atomic orbitals, be 
assigned L and M quantum numbers [5]. The cluster MO's (~L,M) are generated 
from the general spherical harmonics SL, M(0, ~b) according to the following LCAO 
expansion based on atomic or hybrid orbitals (p~) [1, 2]: 

The spherical harmonics SL, M can be scalar spherical harmonics (YL, M) if the 
atomic orbitals are nodeless (i.e. o--type) with respect to the radial vector, vector 
surface harmonics if the atomic orbitals are singly noded (i.e. ~-type) or tensor 
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Fig. 1. The angular coordinate system 
used in tensor surface harmonic theory 

surface harmonics if they are doubly noded (i.e. &type). Two vector or tensor 
surface harmonic functions can be generated from each YL, M, as follows [1, 2]: 

( i) Vector surface harmonics 

VLy = V YL, M (i.e. the gradient of YL, M,V = (0/00) + (sin O)-l(O/Ock)). 

17r, M = r X V YL, M (the parity inverse of  VL, M, corresponding to a rotation of 
each atomic ~r-function by 90 ~ about the radial vector r [1-3]). 

( ii) Tensor surface harmonics 

TL, M = V V  YL.M (i.e. the concavity of YL, M)" 

f'L,U = r X V V  YLM (the parity inverse of TLM, corresponding to rotation of 
each atomic 8-function by 45 ~ about the radial vector [1-3]). 

LM, L The resulting cluster wavefunctions are denoted as follows: WL, M( =- ~" = 
0 ( S ) , I ( P ) , 2 ( D ) e t c . ) ;  ~ - ~ - L ~ / L M ,  L = I , 2 , 3 e t c . ) ;  8 -6  _ ~ItL, M / I ~  L , M ( = ~ --~r �9 ~I# L , M / ~ I t L ,  M (  = 

L M / L M ;  L = 2, 3, 4 etc.). 

For main group clusters, the cluster vertex atoms possess or- and ~'-type frontier 
orbitals only. Thus, cluster bonding may be described in terms of L ~, L ~' and/7  ~ 
functions. In this way, Stone has used TSH theory to derive the (n + t)  skeletal 
electron pair (SEP) rule [6] for closo deltahedral boranes [BnH,]  2- [1, 2] and 
their ( n - D - v e r t e x  nido and ( n - 2 ) - v e r t e x  arachno derivatives [3]. The 
methodology has been extended to 3-connected hydrocarbon clusters [CnH~] 
[7], 4-connected clusters [8] and bispherical clusters (i.e. those where the cluster 
vertices lie on the surfaces of  two spheres of differing radii [9]). 

Quinn et al. have developed an elegant group theoretical methodology whereby 
the symmetries of the L ~, L ~ / L  ~ and L ~ / L  6 orbitals may be evaluated using a 
number of  simple multiplication rules [10-13]. The combination of group theory 
and TSH theory has been utilised by Fowler [14, 15] and ourselves [16-18] to 
rationalise the pattern of skeletal MO's in a number of cluster molecules and, in 
particular, to account for deviations from the (n + 1) SEP rule in a number of 
topologically distinct classes of deltahedral clusters [14, 16, 17]. 

The TSH methodology is also appropriate for the generation of linear combina- 
tions of  ligand orbitals in cluster and coordination compounds [1, 10]. The 
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complementary spherical electron density (CSED) model accounts for the inert 
gas rule and the stereochemistries of main group and transition metal molecules 
[19-21]. The cluster and ligand-sphere applications of TSH theory have been 
combined in a study of face- and edge-bridged octahedral clusters of the form 
[M6(~3-X)8X6] and [M6(/~-X)12X6] , where X is either a 7r-acceptor ligand 
(e.g. CO) or a 7r-donor ligand (e.g. Cl) [22]. 

In all of  the above mentioned applications of TSH theory, the ligand or cluster 
linear combinations were derived explicitly by evaluating the values of the 
spherical harmonic functions for all (01, ~bi) atomic coordinates. In this paper, 
relationships between the topologies of the (ligand or cluster) polyhedra and the 
adoption of  specific spherical harmonic functions are developed. These generali- 
sations greatly assist qualitative applications of tensor surface harmonic theory. 
This approach is entirely complementary to the group theoretical methodology 
of Quinn et al. and should be used in conjunction with these symmetry-based 
arguments to obtain a full (symmetry and spherical harmonic) definition of the 
L ~ and L~/E ~ orbitals. Useful tables of the symmetry transformation properties 
of o--, ~-- and 8-type functions for a large number of  polyhedral geometries, have 
been derived by Fowler and Quinn [13]. 

2. Null and redundant spherical harmonic functions 

Although the TSH and CSED models use solutions of the particle on a sphere 
problem, the atoms define a specific polyhedron belonging to a finite point group 
and, consequently, some of the spherical harmonic functions are either zero- 
valued at all vertex positions (null functions) or generate linear combinations 
which are repetitions of previously used lower order spherical harmonics (redun- 
dant functions). The null functions result from the location of polyhedral vertices 
on nodal planes of the spherical harmonic functions and therefore occur as a 
consequence of  general topological features of the polyhedron. The redundant 
functions result because the finite arrangement of atoms merely constitute a subset 
of the infinite number of  points which define the sphere, and this limited subset 
has a specific maximum number of nodal planes which determines whether or 
not spherical harmonic functions With differing L and M quantum numbers are 
distinguishable. 

For rings and prisms, where all of  the vertices are equivalent (i.e. they are "single 
orbit" structures [13]) and consist of n-membered rings which are perpendicular 
to the principal rotation axis, Cn, the null L ~ functions are particularly simple. 
For a ring, those functions L~:M (where L +  M is odd) are null functions, since 
they are noded in the equatorial plane on which the ring lies. When n is even, 
the function 3~.~s, where ~ =  n/2, is also a null function, for both rings and 
prisms (in this analysis, all polyhedra are defined such that the first vertex of the 
first layer is situated at 4~ = 0~ 

The redundant L ~ functions for rings, prisms and antiprisms (or 2n-vertex 
puckered rings) are listed in the Appendix. Subtraction of the null and redundant 
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functions from the complete set of spherical harmonics leaves us with the L ~ 
functions utilised by rings, prisms and antiprisms (see Tables 1, 3 and 5). 

3. Rings 

3.1. L ~ functions 

For (planar) rings with even numbers of  atoms (n) the L ~ functions generated 
are listed in Table 1. 

The adopted L ~ functions can also be expressed in terms of the solution of the 
Schr6dinger Equation for a particle on a ring, i.e. only one quantum number is 
required since M = L [23]. The ring cluster functions are quantised with respect 
to a single rotation axis and the only possible nodal planes (which do not lead 
to null functions) are those ("vertical") nodal planes which are parallel to (and 
contain) this axis. 

3.2. Generation of cr-functions by multiplication of TS harmonics 

Quinn has shown that the tangential cr-type functions of a polyhedron can be 
generated by taking the L ~ functions and replacing the atomic tr-orbitals by 
tangential (p~) orbitals whose relative signs (i.e. the directions of  the vectors) 
are given by the phases of  the 7r-functions [10-12]. The p~ orbitals are taken to 
lie along lines of  increasing 0(~ -~ or ~b (~-~), as shown in Fig. 1. Quinn demon- 
strated that this superposition technique (which is similar in nature to the 
generator orbital method of  Verkade et al. [24, 25]) corresponds to the following 
Group Theoretical multiplication rules [10-18]: 

0 - -  F ~ + # -  F~ x Fz since the 0 coordinate transforms as the polar vector z. 

F~+# = F~ x FRz since the ~b coordinate transforms as the axial pseudo-vector 
Rz.  

Utilising the notation of  tensor surface harmonic theory, the following analogous 
multiplication rules can be proposed: 

Table 1. L ~ funct ions  ge ne ra t e d  for  p l a n a r  n -gona l  rings 

n 

3 Sff P~:1 

4 Sff PS" 1 D L  

5 . . . . . .  D~z  
6 . . . . . . . . .  F~-c 

7 . . . . . . . . .  F~3 

Even  n . . . . . . . . . . . .  

O d d  n . . . . . . . . . . . .  

L ~ L  " " " &P~c  ~-~ = n / 2  

L~'L �9 �9 �9 . L f ~  ~a = (n -- 1) /2  



The  c lass i f ica t ion  o f  t e n s o r  s u r f a c e  h a r m o n i c  f u n c t i o n s  

{L~/  E~} ~ = L ~ x P~  (Pg  is the vector surface harmonic function with 

polar (z) character (1). 

{L~/ff_,~-} ~" = L ~ x fig (Po is the vector surface harmonic function with 

axial (Rz) character (2). 

15 

--rt 
p,~ 0 

0 

(1)  (2)  

The 0 and ~b components of the tangential orbital set are related by the parity 
inversion operator (~ )  [1-3], since P~ a n d / s g  are so related. 

Using the above methodology, the L ~ and /S ~ functions for a planar ring are 
obtained from the L ~ functions by a superposition of the atomic ~--orbitals on 
the L ~ functions. The effect of multiplying L ~  by P~ is to increase the L quantum 
number by 1, while leaving M unchanged. This follows by analogy with the 
modified Clebsch-Gordan formula for axial point groups [26]: 

D L x Do 1 = DLM +' 

(where D O = S, D 1 = P etc.). 

Since the rings are defined as lying in the equatorial plane, there is no mixing 
between the 0 and ~b components of the tangential orbitals. Therefore the 
multiplication rules (or o - -  r mapping) may be stated: 

L~:L X P~ ~ ( L + 1)~L (0-components only) 

L~ X f ig  ~ ( L +  1)~ L (&components  only) 

e . g . S ~ x P ~  ~ P ~ , S i x / 5 ~  ~ /5~. 

The following identities for rings (see Appendix) can be proved by analysing 
Stone's tensor surface harmonic equations [1-3]: 

For L >  O: ( L +  1)~r = EgG (L+  1)~,L~ = EL,~ 
( L +  1)•  ~ " L:~L, (L  + 1) Lc, rs = LLs, Lc. 

A specific example, for a 4-membered ring, is illustrated in (3). 
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@ 
F" 2c D2~s 

(3) 

F ~r D ~r 

2c -~ 2s 
{for squore ring) 

Thus,  for a single ring, the spherical ha rmonic  mult ipl ication rules may  be 
summarised as: 

(i) 
j P ~  ~ P g  (purely 0 in character;  ou t -of  plane o f  ring 

S~" x / r o  ~ Po (~b; in plane o f  ring) 

L~Lx~P~._~ ~ (L+I)~L=[/dL(O) (ii) 
[ P o  ~ ( L +  1)~L= L~:L (d#) 

~ ~ (L+I)Lc=LLs(O) 
(iii) LLc X [P~ ~ (L+ 1)Zc = LL~(d#). 

The interchanging o f  the Lc and Ls (or + L / -  L) labels, on  mult ipl ication by 
Po ,  occurs because this funct ion t ransforms as the rotat ion opera tor  R z. 

The L ~ funct ions generated,  using the above methodology ,  for  rings with n = 3 - 7 
vertices are listed in Table 2. The/~,~ funct ions form an identical set with matching 
L and M quan tum numbers.  The L ~ funct ions exhibit approximate ly  the same 
pattern as the L~'s  except:  

(i) P~  replaces Sff (there is no S ~ function,  as S ~ has no gradient).  
(ii) For  n = even the final term is ~ rather than ~f~e~. 

Table 2. L ~ functions generated for planar  n-gonal  rings 

n 

3 P~  
4 �9 - �9 

5 �9 �9 �9 

6 �9 ~ �9 

7 �9 ~ �9 

Even n �9 �9 �9 
Odd n ' ' '  

p ~ r  I 

D~2 
�9 .. FL 
�9 . . F ~ 3  

L ~ L  �9 �9 " . L # ~ ,  ~ = n / 2  

L ~ L  �9 " " ~ . ~  , ~ =  ( n  - -  1)/2 
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The values of Zmax(~ ) and Mmax are the same as for the L ~ functions. 

For polyhedra consisting of  2 or more n-vertex rings lying in planes perpendicular 
to the principal rotation axis, similar mappings occur. 

Thus, for M = 0: 

teo (L+ 

For L =  M = n/2 (provided that all vertices are equivalent): 

~p ~ -~ 
LLx _o 

tPo 

For all other L ~  (or L ~ . ~ )  pairs, multiplication by P~ and fig generates 
tangential functions with the correct symmetry characteristics for L E ,  and -~" L~M, 
but not the correct detailed form. In these cases 7r~ ~ mixing occurs, since 
some (or a11) of the vertices lie off the equator. It can however be seen that for 
any general polyhedron the presence of L~M results in the occurrence of L~M 
a n d / S ~ .  The methodology described above therefore represents a technique for 
enumerating the tensor surface harmonic functions for polyhedra rather than 
generating their precise form. 

An exception to these generalisations occurs when there are 2 or more sets of 
eclipsed n-membered rings, with n even. In such cases the L ~ functions with the 
greatest number (n/2)  of  vertical nodes are: 

L~c, ( L +  1)~, (L+2)~c �9 �9 �9 (L+  N -  1)~ 

where N is the number of eclipsed rings. 

Using the above rules, multiplication of  LLc ~ by Po ~ and /3~ generates LLs -~  and 
LL~ respectively. For the functions (L+  I)~c(I = 1 to N - 1), however, the follow- 
ing multiplication rules apply: 

,~ ~P~ ~ (L+I-1)L~ 
(L+ I)LcX (p~ ~ (.L-T--[-z~)~ ~ 

because, as shown in Fig. 2, the horizontal nodes in L~c are converted into mirror 
planes after multiplication by P~. 

The generalisations developed above permit the evaluation of  the L ~ and L~/ff_J 
orbitals for specific classes of  polyhedra without resorting to the explicit formulae 
of the TSH functions. The following sections are concerned with a number of  
classes of polyhedra which are commonly encounted in coordination and cluster 
chemistry. 
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L~ 

Vertical 
nodes retained 
horizontal 
nodes converted 
to mirror 
planes 

Vertical nodes converted 
to mirror planes 
horizontal nodes retained 

Fig. 2. The effect of multiplication by P~ and P~ on the horizontal and vertical nodal  planes of a 
general LM function 

4. Prisms 

Since a prism consists of  a pair of eclipsed n-membered rings, linear combinations 
of the L ~ (or L=/f__, ~) functions on the two rings can be taken to generate the 
orbitals of the prism: 

XI/prism = XI/ring 1 -t- XI/ring 2- 

The in-phase combinations (~+) are identical to the functions of  the individual 
rings (i.e. the general term is L~L). The out-of-phase combinations ( ~ - ) ,  on the 
other hand, possess a horizontal node in the equatorial plane. This leads to 
general functions of the form ( L +  1)~L. 

The W+ and qt- combinations can be generated by multiplying the spherical 
harmonic functions characteristic of the ring by Sff and Pff respectively. Multipli- 
cation by S~ results in the sign and magnitude of the coefficients on the two rings 
being equal, while multiplication by Pff (i.e. P=) introduces a single horizontal 
node, thereby increasing L by one. As indicated above, for nl layers the L ~ 
functions of the single ring must be multiplied by S~, Pg, Dff.  �9 �9 N~, where 
N = n~ - 1, such that: 

L~,LXN'~ ~ (L+N)~L. 
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The concept of  building up structures with cylindrical topologies by stacking 
n-vertex rings will be discussed in more detail in a subsequent publication [23]. 

Table 3 lists the L ~ functions for 2n-vertex prisms with n = 3 - 7 .  As indicated 
above, for a general value of L the functions generated are L~L and L~(L_~. For 
the L ~ functions the value of Lr~x (i.e. s for the 2n-vertex prism and the n-vertex 
ring from which it is generated are related as follows: 

~ p r i s m  = ~ r i n g  + 1 

because the introduction of a horizontal node increases the maximum number  
of  angular nodes ( ~ )  by one. The L ~ functions for general 2n-vertex prisms are 
listed in Table 2. 

Although all of  the vertices of  the prism lie on the surface of a sphere, holes in 
the L r manifold are observed, This occurs because prisms do not represent an 
efficient way of covering a spherical surface [20]. 

The L ~ functions generated by some prismatic geometries are listed in Table 4. 
Prisms are the simplest examples of the class of  non-polar polyhedra (defined as 
having no atoms on the principal C~ axis [17]). As for rings, the L ~ and /S ~ 
manifolds of  non-polar  polyhedral clusters are totally distinct (i.e. there are no 
degenerate L~/f_, ~ pairs) [17]. The pattern for the L = functions is very similar 
to that of  the L = functions (as for rings), with the general functions generated 
b e i n g  L~(L-1 )  and L~L. For odd n the L ~ functions generated are the same as 
the L ~ (but with Sff replaced by Dg)  and the final term is ~ ( ~ _ ~ ) ,  where 
5r = Lmax = Mmax+ 1 = (n + 1)/2. In terms of the spherical harmonic multiplication 
rules, So x Po ~ P~; P ~ x  Po ~ D~; L• x Po ~ L~:M. 

From Table 4 it can be seen that.prisms with even n have two non-degenerate 
highly noded ~--type functions: 5f~s and 5C~c(~f = n/2) .  For the square prism 
(n - -4 )  these orbitals are D2~ and D2~. [In this treatment the square prism is 
considered to be distorted in such a way as to possess axial (D4h) rather than 
cubic (Oh) symmetry]. Following the arguments developed in the previous section 
for eclipsed-ring geometries, these L = orbitals are derived from the L r functions 
by the following mappings (see Fig. 3): 

Table 4.  L = functions generated for 2n-vertex prisms 

r/ 

3 Pff 

4 �9 �9 

5 �9 �9 

6 �9 �9 
7 �9 �9 

Even n �9 �9 
Odd n . .  

P~l  D~ D~ 1 

. . . . . . . . .  D~r 

. . . . . . . . .  D~2 F~2 

. . . . . . . . . . . . . . .  F~c,3 s 

. . . . . . . . . . . . . . .  F~3 

. . . . . . . . . . . .  L~(L  1) L ~ L  

. . . . . . . . . . . .  L ~ ( L - t )  L ~ L  

G13 
�9 �9 �9 ~ . . ~ .  ~ = n/2 
" ' '  ~(~r  ~ =  ( n + 1 ) / 2  
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o F2C 

x P~ 

F~s ~ ~ 

x PO 

F2s ~ D2c 

Fig. 3. Some L ~ ~ L ~ / E  ~ mappings for a square prism 

D 2 c •  ~ D2~ 

F2c x / P ;  ~ D2~. 

5. Antiprisms 

Antiprismatic geometries are constructed from two n-membered rings which are 
staggered with respect to each other. Following the method developed above for 
prisms, in-phase and out-of-phase combinations are taken. Identical functions 
are generated by 2n-vertex puckered rings, which have the same symmetry. 
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Table 5. L ~" functions generated for 2n-vertex antiprisms 

R. L. Johnston and D. M. P. Mingos 

2 
3 
4 

5 
6 
7 
Even n 
Odd n 

S~ Pff P~I (i.e. tetrahedron) 
. . . . . . . .  D~I 
. . . . . . . . . . .  D~2 
. . . . . . . . . . . . . .  F~2 

. . . . . . . . . . . . . .  L~(L_I) 

. . . . . . . . . . . . . .  L'~(L_I ) 

FO-3 

� 9  G ~ 3  

L~L �9 �9 " , ~  ~ = n / 2  

L~L " ' "  ~ '~ (~ -  1) ~ =  ( n +  1)/2 

The L ~ func t ions  gene ra t ed  by  some an t ip r i sma t i c  geometr ies  are  l i s ted  in Table  
5. As for  p r i sma t i c  geomet r ies ,  the  genera l  func t ions  which  are a d o p t e d  are L~L 
and  L~(L-1)- F o r  o d d  n, the  set o f  L ~ func t ions  genera ted  by  an an t ip r i sm are 
the  same as that  o f  the  co r r e spond ing  pr i sm,  wi th  the final funct ions  ~ ( S ~  = 
( n +  1 ) / 2 =  Mmax+ 1). F o r  even n, however  the  final te rm is ~ e  (where  ~ =  
Mma~ = n / 2 ) .  T h e  360~ ro ta t ion  o f  the  u p p e r  p lane  relat ive to the  lower  one  
ensures  tha t  bo th  o f  the  ~L#~L func t ions  are  genera ted .  The  r e l a t ionsh ip  be tween  
the D 2 ~ / F 2 ~ c  funct ions  o f  the  square  p r i sm and  the D'~ 2 funct ions  o f  the  square  

an t ip r i sm are i l lus t ra ted  in Fig. 4. 

The  L ~ func t ions  genera ted ,  by  the  spher ica l  h a r m o n i c  mul t ip l i ca t ion  rules,  for  
some an t ip r i sma t i c  geomet r i e s  are l is ted in Table  6. The L ~ funct ions  (for bo th  
even and  o d d  n) are iden t ica l  to those  for  the  p r i smat ic  geometr ies .  

s uareprsm  
D2aC F#C 

D~c D~s 
Fig. 4. Comparison of the D~c and F~c orbitals of a square prism with the D~c,2 s orbitals of a square 
antiprism 
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Table 6. L = functions generated for 2n-vertex antiprisms 

23 

2 
3 
4 
5 
6 
7 
Even n 
Odd n 

P~ P~, D~ 
. . . . . . . .  D~I 
. . . . . . . . . . .  D~2 
. . . . . . . . . . . . . .  F ~ 2  

. . . . . . . . . . . . . .  L ~ ( L _ I )  

. . . . . . . . . . . . . .  L~(L_I~ 

F2~ 
�9 . . G ~ 3  

L~L " " " ~ z e  ~ =  n/2 
L~- L . . .  5r ~La=(n+l)/2 

6. Composite polyhedra 

It has been shown above that prisms and antiprisms may be treated as two 
eclipsed or staggered n-membered rings, and that their L ~ functions (and sub- 
sequently their L ~ functions) may be generated by taking linear combinations 
of  the ring functions. This principle may readily be extended to a large number 
of  polyhedral types consisting of two or more sub-sets ("orbits"  [13]) of  equivalent 
(i.e. connectivity- and symmetry-equivalent) vertices. The L ~ functions of  these 
"composi te  polyhedra"  can then be evaluated by taking linear combinations of  
the orbitals of  the separate subsets of  vertices. 

6.1. Pyramids 

An (n + 1)-vertex pyramid is generated by capping an n-vertex ring, i.e. by placing 
a vertex on the Cn rotation axis. This vertex generates a single L ~ function (S~). 
This function combines with the S~ combination of  the ring, 

O+(S~) = S~ 

O - ( S ~ )  = P~. 

Since a pyramid is a 3-dimensional, 2-layer polyhedron (like the prisms and 
antiprisms), a function possessing a single horizontal node (i.e. with M = L -  1) 
is allowed. The L~ functions with L >  1 are merely repeats of  So (even L) or Po 
(odd L). Thus, the L ~ functions of  an ( n +  1)-vertex pyramid are identical to 
those of  the parent n-membered ring, with the addition of P~. 

The spherical harmonic multiplication rules do not apply to those polyhedra 
possessing vertices on the principal rotation axis. A pyramid is an example of  
such a polyhedron and may be classed as a "polar polyhedron" since there is a 
single (polar) vertex on the C~ axis [17]. For the L ~ orbitals, as for the L ~ 
functions, it is necessary to take linear combinations of  orbitals located on the 
polar  and ring vertices. The polar  atom possesses a single degenerated ( P ~ / P ~ ) ~ 1  
pair. The combination of this pair with the P~I and P~I orbitals of  the ring 
(which possess the same symmetry in any Cnv point group) generates one P~I 

--Tr pair, one P• pair and a degenerate ( D ~ / I ) ~ ) •  1 pair. Molecular orbital calcula- 
tions have shown that (nido) pyramidal structures do indeed possess degenerate 
(D~/D~)• orbitals in the frontier orbital region [14, 16, 17]. 
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Pyramids are the simplest examples of the class of polar polyhedra. It has been 
shown that a general polar polyhedron possesses a frontier orbital pair of 
degenerate (L~/IS~)• orbitals, where L is equal to the number (nl) of layers 
(horizontal planes) of vertices in the polyhedron (e.g. L = 2(D) for pyramids) [17]. 

6.2. Bipyramids 

An (n +2)-vertex bipyramid is generated by placing two polar atoms on the C, 
axis of an n-vertex ring. These two atoms constitute a bipole and generate Sff 
and P~ combinations. The Sff function of the bipole combines with the Sg 
function of the ring to yield S~(@ +) and Dff(@-). Thus, the L = functions of an 
(n+2)-vertex bipyramid are merely those of the parent n-vertex ring with the 
addition of Pff and D~. A bipyramid is a 3-layer structure and it possesses 3 Lff 
functions. 

~- -~r  Considering the 7r-type functions, the bipole generates a P• and a P• pair. 
~" P •  Linear combinations may be taken of these functions and the P• and -= 

functions of the ring: 

0+(P~I) = P~I; 0-(P~I) =/)~1 

Thus, the L "~ and /S = functions generated by an (n+2)-vertex bipyramidal 
geometry are the same as those of the parent n-vertex ring, with the addition of 
D• and -~ w n• 

Bipyramids are the simplest examples of the class of bipolarpolyhedra (possessing 
2 vertices on the principal C, axis) [17]. Bipolar polyhedral clusters are charac- 

L• orbitals, terised by frontier orbital pairs of bonding L• and antibonding -~ 
with L=  (n~- 1). The L:~I functions have 7r character (i.e. in-phase) with respect 
to the polar vertices if L is odd and w* character (out-of-phase) if L is even, 
while the converse is true for the/S~1 functions [17]. 

7. Applications 

Applications of the methodology developed above to valence and vibrational 
problems in inorganic chemistry are widespread and only some illustrative 
examples will be given below. 

The composite polyhedra approach may be used to explain the spectrum of 
skeletal MO's in a number of classes of cluster compounds. For example, we 
have noted previously that N-vertex prisms and related 3-connected polyhedral 
clusters are characterised by ( N - 2 )  approximately non-bonding parity related 
L ~ and /S ~ orbitals [7]. This can be rationalised by generating the tangential 
orbitals of the prism from those of its constituent rings: 
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t~+(L~r) ~ L~L;  ~b+(f-,~L) ~ f~L 

O-(L~L) ~ ( L + I ) ~ * ;  ~b-(E~r) ~ ( L + I ) ~ * .  

For even n :  

r  ~ ~ _ ~ ;  r  ~ ( ~ + 1 ) . ~ =  c ~  * 

+ - - ~ -  - - ~ "  o - -  - -T r  "n" 
(~?ze~) ~ ~ze,, ~b (~ze,) ~ ( ~ ? + l ) ~ e ~ = ~  * 

(where the non-bonding tangential orbitals are labelled with an asterisk). 

The non-bonding character of the if-  combinations can be rationalised in terms 
of their intra- and inter-ring bonding characteristics. The ~- (L~r)  combinations 
[i.e. ( L +  1)~r are bonding within each ring but antibonding between the rings. 
In contrast, the O-(E~L) combinations [i.e. ( L +  1)~r] are bonding between the 

- ~ ~ e , ]  function, with ~ =  n/2, is bonding rings. For even n, the $ ( ~ )  [i.e. -~ 
within the rings but antibonding between them, while the converse is true for 
$-(~7e,) [i.e. ~ , ] .  The balance between intra- and inter-ring bonding/antibond- 
ing character causes all of  these r  combinations to be approximately non- 

Ring 1 Prism Ring 2 

In vertices) IN = 2n vertices) (n vertices) 

{2n-2)= N-2 

"non bonding" 
tangential orbitals 

~ 
Fig. 5. Scheme depicting the spectrum of tangential MO's for prismatic clusters 
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bonding. However, the Pg and/3g orbitals of the ring are strongly bonding and 
antibonding respectively. This means that both the ~b + and the qJ- combinations 
of Pg (i.e. Pg and Dg) are overall bonding, while those of/sg (i.e./3~ and/)~)  
are both antibonding. As illustrated in Fig. 5, the total number of non-bonding 
tangential orbitals is [7]: 

2 ( n - l )  = 2 n - 2 = N - 2 .  

The non-bonding tangential orbitals of 2n-vertex prisms with n = 3 -  7 are listed 
in Table 7. 

The ready access to the spherical harmonic notation is also useful for dealing 
with orbital pseudo-symmetry correlations. For example, the alternative ligand 
geometries for a five coordinate atom are square pyramidal and trigonal 
bipyramidal. In a molecule such as PH5 the five occupied tr-bonding molecular 
orbitals can be assigned the following L ~ labels relative to their principal rotation 
axes: 

o-  o-  o-  o -  o -  

Trigonalbipyramid So Po Plc Pls Do 

Square pyramid S~ Pg PI~ P1% D2~. 

Since completely occupied L ~ shells cannot make rearrangements orbitally forbid- 
den, attention can be focussed exclusively on the D~ and O2~c functions (4). 
Although their nodal characteristics are different with respect to their principal 
axes, they are both doubly noded with respect to the 2-fold axis about which the 
pseudo-rotation which interconverts them takes place (i.e. they can both be 
denoted D2~ and may, therefore, be correlated). A trigonal bipyramidal main 
group molecule, therefore, rearranges by an orbitally-allowed TBP-SP-TBP 
mechanism [27]. 

In contrast, the TBP-SP-TBP rearrangement of trigonal bipyramidal [BsHs] 2- is 
orbitally forbidden [28] as the square pyramidal intermediate (being a polar 
polyhedron) possesses a degenerate (D=//)=)• pair. Thus, as shown in Fig. 6, 
the TBP-SP-TBP interconversion involves the correlation of an occupied orbital 

7 r  - - 7 r  (Dis) with an unoccupied one (Dlc) [29]. 

trigona[ bipyromid squore pyramid 

Dg 

(4) 
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trloonal bloyramld 1 trloonal blpyramld 2 
square pyramid 

~;s.~;s 

6 sEP'~ o~s.o L 

/ \ 

/ % 
J \ 

("'""" lr ~ '  D;:'~ 

4141 / \ \ \ \  

1L "DL 

Frontier tanoentlal orbltals for square pyramidal [BsH5)2- (6 SEP's) 

(DWl~W),1 

Fig. 6. Schematic representation of the forbidden nature of the TBP-SP-TBP pseudorotat ion for 
[BsHs] 2~ 
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Table 8. Equivalent LCAO and LCFLO ~ funct ions 
of octahedral [B6H6] 2- 

LCFLO function (Skeletal bonding) 
LCAO function 

Pf~( h ~,) (P~v + P;)( t, .) 
Df~( t2g) Dp(t2g) 
Ff~(a2~) No Match 

a Linear combination of  face-localised orbitals 

As a final example of the application of the spherical harmonic rules to problems 
concerning cluster bonding, an  equivalent orbital [30, 31] approach has been 
developed which describes cluster valence orbitals in terms of spherical harmonic 
expansions of face- or edge-localised bonding or antibonding orbitals [32]. In 
the tensor surface harmonic equivalent orbital (TSHEO) approach [32] the 
bonding skeletal MO's of octahedral [B6H6] 2- for example can be represented 
as linear combinations of face-localised bonding orbitals (i.e. nodeless localised 
orbitals located at the centers of the 8 faces of the octahedron, thereby defining 
a cube). Thus the skeletal bonding MO's of the octahedron are symmetry- 
equivalent to the L ~ orbitals of its face-dual polyhedron [32], the cube (these 
orbitals are, therefore, denoted L:~). The  L :~ functions (linear combinations of 
localised ofbitals; "LCLO's")  and their LCAO equivalents are listed in Table 8. 
However, the Ff~(a2,)  combination of localised orbitals (5) is doubly noded 
with respect to each of the square faces (i.e. octahedral vertex positions) and as 
such cannot be generated by taking linear combinations of nodeless (o-) or singly 
noded (or) atomic orbitals. This leads to the conclusion that the number of allowed 
"face-bonding" functions is ( f - l ) = 7 ,  where f is the number of faces of the 
cluster polyhedron. Similar arguments, when applied to other closo boranes or 
transition metal carbonyl clusters (where the frontier orbitals are again of o-- and 
~r-type only) reveal that all such deltahedral clusters possess (n - 5 )  "forbidden" 
L f~ functions, thereby enabling the (n + 1)-SEP rule to be derived as follows: 

Number of SEP's = number of allowed L f~ functions = f -  (n - 5) = (n + 1) 

(since f =  2(n -2 )  for all deltahedra). 

In octahedral metal clusters with edge-bridging ~-donor ligands (e.g. [Ta6(/z- 
C1)12C18] 4-) the metal fragments possess 8- as well as o-- and ~-type frontier 
orbitals and are characterised by 8, rather than 7 SEP's, since the FY2~ localised 
function finds a match in the F](a2u) orbital (6) of the octahedron [22, 31]. 

/~  ," ] 

(5) 
Ff~ (a2 u) F~ (a2u) 

(6) 
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8. Summary 

In this paper, Stone's tensor surface harmonic theory has been used to assign 
pseudo-spherical symmetry labels to the valence orbitals of cluster and coordina- 
tion polyhedra. Our approach has revealed the occurrence of  patterns in the 
radial (L ~) functions which are generated for specific classes of polyhedra. 
Spherical harmonic multiplication rules, analogous to Quinn's group theoretical 
approach, permit the evaluation of the L ~ and /S ~ orbitals from the L~'s. The 
L~/f_, ~ functions also exhibit definite patterns which reflect topological features 
of the polyhedra. 

This simple method of evaluating the L ~ and L ' / E  ~ orbitals of  a polyhedron 
can be used to simplify a wide range of bonding problems, because it retains the 
pseudo-spherical symmetry characteristics of the orbitals. In addition, the L ~ 
and L ~ / L  ~ functions for complex polyhedra can be obtained from an aufbau-type 
procedure, whereby linear combinations of  the functions of the component 
polyhedra are taken. This makes the qualitative aspects of the TSH methodology 
generally applicable and obviates the need for explicit evaluation of the L ~, L ' / I S  ~ 
etc. functions. 

Appendix: Redundant L and L functions 

A1. Rings 

Unique functions Redundant (i.e. equivalent) functions 

S~ Do Go �9 �9 �9 Lo L = 2p; p = 1, 2, 3 , . . .  
P~'~ F•  n •  �9 �9 �9 L•  L = 2p + 1 
D•176 = G• 1• " " " L• L = 2p + 2 
N+N L• L = 2 p +  N. 

These redundancies may be represented by the following identity: 

L •  n = 1, 2, 3 , . . .  �9 (L+2n)7.Z = ~,~ 

The radial functions L• with L +  M = odd are noded in the plane of the ring 
and, therefore, are null functions. The following identity exists which relates even 
and odd parity tangential functions: 

L:t:L, ( L +  1)~L = -~ 

A2. Prisms 

Unique functions Redundant functions 

S~ Do Go �9 " " 
P~'~ Fo Ho ' ' -  

p~"l ~ F• H• " " " 

Lo L = 2p 

Lo } L = 2 p + l  
g~l 
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D~'ff G• /~1 " ' "  L~l } L = 2 p + 2  
D~5 = G~2 /~2 " " " L• 

o-, 7r  

N• L• L = 2 P +  N 
o- ,~  N• L• 

These redundancies  can be represented by the following identity: 

(L+2n)•177 ( w h e r e M = L o r ( L - 1 ) ) .  

The fol lowing identities relate even and odd  par i ty  tangential  functions:  

= Sf~c,~es for  even n ( ~  = n/2) 

( ~ + l ) ~ z e = c ~ e  f o r o d d n ( ~ = ( n + l ) / 2 )  

A3. Antiprisms 

The redundan t  funct ions are the same as in the pr ismat ic  case, with the fol lowing 
identi ty relating even and  odd  pari ty tangential  functions:  

(S~+ 1 ) ~  = ~ e ( ~  = n/2, n even; ~ = (n + 1)/2, n odd).  
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